DPP - 2

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://youtu.be/rTg2MIwPV6g

Q 1. If the velocity of block B in the given arrangement is $300 \mathrm{~mm} / \mathrm{sec}$ towards right. Find the velocity of A :

Q 2. Find the velocity of block B when ring A is moving downward with velocity v :

(a) $v \sin \theta$
(b) $\frac{v}{2} \sin \theta$
(c) $v \cos \theta$
(d) $\frac{v}{2} \cos \theta$

Q 3. If block A is moving horizontally with velocity V_{A}, then find the velocity of block B at the instant as shown in fig:.

(a) $\frac{\mathrm{h} V_{A}}{2 \sqrt{x^{2}+h^{2}}}$
(b) $\frac{x V_{A}}{\sqrt{x^{2}+h^{2}}}$
(c) $\frac{x V_{A}}{2 \sqrt{x^{2}+h^{2}}}$
(d) $\frac{\mathrm{h} V_{A}}{\sqrt{x^{2}+h^{2}}}$

Q 4. A cart is being pulled up the incline, using a motor M and an ideal pulley and ideal rope arrangement as shown in figure. Then the speed of point ${ }^{\prime} P^{\prime}$ of the string with which it moves so that the car moves up the inclined plane with a constant speed of $V_{\text {cart }}=2 \mathrm{~m} / \mathrm{s}$ is (Incline is at rest):
(a) $12 \mathrm{~m} / \mathrm{s}$
(b) $3 \mathrm{~m} / \mathrm{s}$
(c) $5 \mathrm{~m} / \mathrm{s}$
(d) $6 \mathrm{~m} / \mathrm{s}$

Q 5. In Fig. a ball of mass m_{1} and a block of mass m_{2} are joined together with an inextensible string. The ball can slide on a smooth horizontal surface. If V_{1} and V_{2} are the respective speeds of the ball and the block, then determine the constraint relation between velocities of the two.

(a) $V_{2}=V_{1} \cos \theta$
(b) $V_{1}=V_{2} \cos \theta$
(c) $V_{1}=V_{2}$
(d) $V_{2}=V_{1} \sin \theta$

Q 6. Find $V_{B}=$?

(a) $10 \mathrm{~m} / \mathrm{s}$
(b) $8 \mathrm{~m} / \mathrm{s}$
(c) $14 \mathrm{~m} / \mathrm{s}$
(d) $6 \mathrm{~m} / \mathrm{s}$

Q 7. Determine the speed with which block B rises in Fig. if the end of the cord at A is pulled down with a speed of $2 \mathrm{~m} / \mathrm{s}$.

(a) $4 \mathrm{~m} / \mathrm{s}$
(b) $3 \mathrm{~m} / \mathrm{s}$
(c) $\frac{3}{2} \mathrm{~m} / \mathrm{s}$
(d) $\frac{1}{2} \mathrm{~m} / \mathrm{s}$

Q 8. Two rings each of mass $M=100 \mathrm{gm}$ are constrained to move along a fixed horizontal rod An ideal string is connected with rings and block of mass $M_{o}=200 \mathrm{gm}$ is connected to the mid point of string At a certain moment the mass m is moving downward with yelocity $\sqrt{3} \mathrm{~m} / \mathrm{s}$. Find the speed of ring of M at the moment:

(a) $4 \mathrm{~m} / \mathrm{s}$
(b) $3 \mathrm{~m} / \mathrm{s}$
(c) $2 \mathrm{~m} / \mathrm{s}$
(d) $1 \mathrm{~m} / \mathrm{s}$

Q 9. In the given figure, find the speed of pulley P -

(a) $\frac{V}{2}$
(b) $2 V \cos \theta$
(c) $\frac{2 V}{\cos \theta}$
(d) $\frac{V}{2 \sin \theta}$

Q 10. Figure shows a rod of length 1 resting on a wall and the floor. Its tower end A is pulled towards left with a constant velocity u. As a result of this, end A starts moving down along the wall. Find the velocity of the other end B downward when the rod makes an

(a) $u \tan \theta$
(b) $u \cot \theta$
(c) $u \sin \theta$
(d) $u \cos \theta \backslash$

Q 11. The velocities of A and B are marked in the figure. Find the velocity of block C (assume that the pulleys are ideal and string inextensible)

(a) $2 \mathrm{~m} / \mathrm{s}$
(b) $4 \mathrm{~m} / \mathrm{s}$
(c) $5 \mathrm{~m} / \mathrm{s}$
(d) $\sqrt{10} \mathrm{~m} / \mathrm{s}$

Answer Key

Q. 1	b	Q. 2	c	Q. 3	c	Q. 4	d	Q. 5	a
Q. 6	a	Q. 7	d	Q. 8	d	Q. 9	c	Q.10	b
Q. 11	c								

